
University of Illinois at Urbana-Champaign
Department of Computer Science

First Examination
CS 225 Data Structures and Software Principles

Fall 2007
7p-9p, Thursday, October 4

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. No electronic aids are allowed, either.

• You should have 5 problems total on 20 pages. The last two sheets are scratch paper; you
may detach them while taking the exam, but must turn them in with the exam when you
leave.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

• Please put your name at the top of each page.

Problem Points Score Grader

1 20

2 20

3 20

4 20

5 20

Total 100

1. [Pointers, Parameters, and Miscellany – 20 points].

MC1 (2.5pts)

Consider the following C++ statements:

#include <iostream>
using namespace std;

int main(){
int *y;
int x = 36;
//code to be inserted here
(*y)++;
cout << x << endl;
return 0;

}

Which of the following choices, if inserted at the line marked, will result in 37 being sent to
standard ouput? Answer: b

(a) y = x;

(b) y = &x;

(c) *y = x;

(d) *y = &x;

(e) None of these will give the result we want.

MC2 (2.5pts)

We need to write our own destructor (instead of using the default one) when...Answer:c

(a) we have private members that are pointers.

(b) we have private members that are arrays.

(c) we have allocated dynamic memory in our constructors.

(d) two of these three require that we write our own destructor.

(e) all of the above require that we write our own destructor.

MC3 (2.5pts)

Consider the following C++ statements:

#include <iostream>
using namespace std;

void myFun(int * x) {
int *y = new int;
*y = 16;
x=y;
delete y;
}

int main(){
int i = 9;
myFun(&i);
cout << i << endl;
return 0;

}

What is the result when this code is compiled and run?Answer: c

(a) Nothing. This code does not compile.

(b) 16 is sent to standard out

(c) 9 is sent to standard out

(d) The address of i is sent to standard out

(e) This compiles fine, but will generate a segmentation fault when executed (runtime error).

MC4 (2.5pts)

Consider this prototype for a template function:

template <class Item>
void foo(Item x);

What is the right way to call the foo function with an integer argument i?Answer: a or b

(a) foo(i);

(b) foo<int>(i);

(c) foo<Item>(i);

(d) foo(<int> i);

(e) foo(<Item> i);

MC5 (2.5pts)

Consider the following C++ statements:

class Ball {
public:

//constructors and other member functions
...
void setSameRadius(Ball & orig) const;

private:
int radius;

}

void Ball::setSameRadius(Ball & orig) const {
radius = orig.radius;

}

Consider the Ball class and the setSameRadius function shown above. This function is
expected to set the radius of this Ball object to the same value as the radius of the orig Ball
object.

This function: Answer: d

(a) compiles and runs without error but does not perform the desired task.

(b) compiles and runs without error and performs the desired task.

(c) encounters a run-time error.

(d) does not compile because of an error involving setSameRadius.

(e) compiles and runs without error, performs the desired task, but changes the value of
orig.

MC6 (2.5pts)

Suppose we have implemented a queue as a singly linked list with a tail pointer modeled here:

Which of the following best describes the running time of the enqueue and dequeue operations
if the rear of the queue must be at the head of the linked memory structure? (n is the number
of elements in the queue.) Answer: c

(a) O(1) for both enqueue and dequeue

(b) O(n) for both enqueue and dequeue

(c) O(1) for enqueue and O(n) for dequeue

(d) O(n) for enqueue and O(1) for dequeue

(e) None of these is the correct choice.

MC7 (2.5pts)

Suppose myVar is declared as follows: int ** myVar;. Which of the following could describe
the variable myVar once it has been initialized?Answer: e

(a) myVar is a dynamic array of integer pointers.

(b) myVar is a pointer to a dynamic array of integers.

(c) myVar is a dynamic array of dynamic arrays of integers.

(d) Two of these are valid descriptions (and one is not).

(e) All three are valid descriptions.

MC8 (2.5pts)

Consider the following partial class definitions:

class Sphere {
private: double theRadius;
public:

// Lots of member functions go here.
double getArea() const; // ***computes surface area***
virtual void displayArea() const;

// displayArea() includes the statement "cout << getArea() << endl;"
};

class Ball: public Sphere {
private: string theName;
public:

// Lots of member functions. Note: Ball class inherits displayArea().
double getArea() const; // ***computes cross sectional area***

};

Now suppose you have the following in your main() function:

Sphere mySphere;
Ball myBall;
myBall.displayArea();

Which of the following describes the behavior of this code in main()? Answer: a

(a) myBall’s surface area is displayed.

(b) myBall’s cross sectional area is displayed.

(c) The call to getArea() within displayArea() is ambiguous, so there is a compile error.

(d) A bus error occurs at run time.

(e) None of these options describes the behavior of this code.

2. [The Big Three – 20 points]. Consider the following partial class definition:

class Slideshow
{

private:
Image** slides;
int* durations;
int slidecount;

// perhaps some helper functions

public:
// default constructor and destructor

Slideshow(const Slideshow & source);

// lots of public member functions
};

The class is a Slideshow class, which stores information about a series of slides (of type Image),
and their durations. The slides structure is a dynamically allocated array of Image pointers.
durations is a dynamically allocated array of integers, representing how long each slide is to
be displayed. Each array has slidecount elements and slidecount is greater than zero.

In this question you will write the copy constructor for the Slideshow class that you would
include in the slideshow.cpp file.

You may assume that all pointers are valid. That is, they are either NULL or they point to
an object of the specified type. Furthermore, you may assume that the Image class has an
appropriately defined “Big Three” (destructor, copy constructor, and assignment operator).
You may not specify, nor may you assume the existence of, any particular helper functions in
your solution.

You may write your answer on the following page. To grade this problem, we will first read
your comments to make sure you intend to do the right thing, and then we’ll check your
code to make sure it does what your comments say it should. As a result, be sure your
comments are coherent, useful, and reflective of your approach to the problem. You may use
the template on the following page for your response, or you may write free-form on the back
of this page or the next.

problem 2 continued...

Solution:

Slideshow::Slideshow(const Slideshow & origval) {

slidecount = origval.slidecount; //define slidecount
slides = new Image *[slidecount]; // allocate space for slides
durations = new int[slidecount]; // allocate space for durations
for (int j = 0; j < slidecount; j++) { // loop to fill arrays

durations[j] = origval.durations[j];
if (origval.slides[j] != NULL)

slides[j] = new Image(*(origval.slides[j])); //copy images
else

slides[j] = NULL;
}

}

Grading scheme:

• 1 point for correct function signature

• 1 point for copying slidecount

• 1 point for correctly allocating slides

• 1 point for correctly allocating durations

• 2 points for correctly copying contents of durations

• 8 points for correctly copying contents of slides:

– 5 points for correctly copying non-NULL contents of slides including mak-
ing copies of the Image objects

– 3 points for properly handling NULL pointers in slides

• 6 points for comments:

– 1 point for saying you are allocating new memory
– 1 point for commenting that you handling NULL pointers in slides
– 2 points for saying you are making a deep copy (i.e. copying objects

rather than pointers)
– 2 points for writing comments indicating an understanding copy con-

structors

3. [Iterators – 20 points].

Consider a BackPack class object and two iterators which we have declared in main() using
the following statements:

BackPack<int> bp;
BackPack<int>::iterator it1;
BackPack<int>::iterator it2;
// Some code which inserts an ODD number (> 3) of integers into the BackPack
// Some code you write here!!

Your task is to use the iterators and a single additional integer variable sum3 to compute the
sum of the middle three integers in the BackPack. That is, if the BackPack had values:

< 3 2 8 4 5 9 1 6 0 2 4 9 1 >

your code would compute 9 + 1 + 6 = 16.

You may assume that the BackPack class has member functions begin() and end(), each
of which returns an iterator to the appropriate element of the BackPack. That is, begin()
returns an iterator indicating the first element of the BackPack and end() returns an iterator
indicating the element past the last element of the BackPack. You may also assume that the
operators *, ++, --, ==, and != are overloaded for BackPack iterators. You may ONLY use
variables it1, it2, and sum3 in your code. Do not declare any additional variables, and do
not assume that the BackPack class provides any other public member functions.

You may write your answer on the following page. To grade this problem, we will first read
your comments to make sure you intend to do the right thing, and then we’ll check your
code to make sure it does what your comments say it should. As a result, be sure your
comments are coherent, useful, and reflective of your approach to the problem. You may use
the template on the following page for your response, or you may write free-form on the back
of this page or the next.

problem 3 continued... Solution:

it1 = myVect.begin();
it2 = myVect.end();
it2--; // it2 now points at the last element in the Vector

// N.B.: since the size of the Vector is odd, this loop will eventually terminate
while (it1 != it2) {

it1++;
it2--;

}

// at this point, it1 and it2 both point to the middle element in the Vector
sum3 = *it1;
it1--;
it2++;
sum3 += *it1 + *it2;

Grading scheme:

• 6 points for making the appropriate comments

– 2 points for comments about setting the start and end of the vector
– 2 points for comment about calculating the middle element
– 2 points for comment about calculating the sum

• 1.5 points for setting the iterators to the beginning and end of the list.

• 4 points for identifying the middle elements or the list

• 1.5 points for properly accessing the value of iterator

• 4 points for calculating the sum of three middle elements without using any
other variables.

• 2 points for the appropriate uses of the overloaded operators.

• 1 point for no syntax errors in the code.

4. [Linked List Reversal – 20 points]. Consider the following partial class definition:

template<class T>
class LinkedList {
private:

class listNode{
public:

listNode():next(NULL){}
T data;
listNode * next;

};
listNode * head;

public:
// constructors, destructor, and other member functions
...
void reverse();

};

(a) (10 points) This class is a simple singly-linked list class. You are to write an iterative
reverse() function that reverses a list by rearranging next pointers and changing the
head pointer if necessary. You should not need to call any outside functions to write
the code for reverse(). To illustrate the action reverse will perform, the following is a
LinkedList<int> object before the call to reverse():

The following is that same LinkedList<int> object after the call to reverse():

You may write your answer on the following page. To grade this problem, we will first
read your comments to make sure you intend to do the right thing, and then we’ll check
your code to make sure it does what your comments say it should. As a result, be sure
your comments are coherent, useful, and reflective of your approach to the problem.
You may use the template on the following page for your response, or you may write
free-form on the back of this page or the next.

Solution

void LinkedList::reverse()
{

listNode * cur = head; // Traverse list with 2 pointers pointomg
listNode * prev = NULL; // to the current and previous list nodes

while (cur !=NULL) // A node still needs it’s pointer reversed
{

listNode * temp = cur->next; // Save a pointer to the next node

cur->next = prev; // Reverse the current node’s ‘‘next’’
// to point to the previous node

prev = cur; // Move the ‘‘prev’’ pointer to
// point to the current node

cur = temp; // Move ‘‘cur’’ to the next node
// in the list

} // End while loop
head = prev; // ‘‘prev’’ points to the end of the list

} // Complete the reversal by setting ‘‘head’’
// to point to the end of the list

Grading scheme:

• 3 points for good comments
• 2 points for setting head pointer correctly
• 5 points for working reversal code even if O(n2)

(b) (5 points) Analyze the running time of the code you wrote in part (a). You should state
the worst-case time complexity of your code when operating on a list with n nodes and
briefly explain why it would take that much time.

The running time of reverse() on an n node list would be O(n). The code
traverses the length of the list a single time thereby visiting n nodes and
does O(1) work on every listNode it visits.

Grading scheme:

• 3 points for correct running time
• 2 points for a good explanation

(c) (5 points) If the LinkedList class were implemented as a doubly-linked list instead of
a singly-linked list, could the running time of reverse() be improved? Why or why not?

No. The “previous” and “next” pointers of each node in doubly-linked list
need to be swapped, so every listNode would still have to be visited.

Grading scheme:

• 3 points for correct answer (e.g. ”no” for an O(n) algorithm, ”yes” for
an O(n2) algorithm)

• 2 points for a good explanation

5. [Stack and Queue Interfaces – 20 points].

Imagine that you are given a standard Stack class and Queue class, both of which are designed
to contain integer data (interface provided on following pages).

Your task is to write a function called Rev0 that takes one argument: a reference to a Queue.
The function should reverse the order of any numbers appearing between a pair of consecutive
0’s, where the pairs can’t overlap (so we reverse the elements between the first 0 and the
second one, leave alone the elements between the second and third, reverse the ones between
the third and fourth, and so on). If there are an odd number of 0’s in the given queue, the
elements following the last 0 should also be reversed.

For example, given the following queue,

front rear
1 0 5 3 0 3 1 0 2 6 5

we get the following arrangement:

front rear
1 0 3 5 0 3 1 0 5 6 2

We are putting some constraints on your implementation. Specifically, you must write the
function using only the variable declarations we provide. We are allowing you four local
variables: two ints, one Stack, and one Queue.

You may write your answer on the following page. To grade this problem, we will first read
your comments to make sure you intend to do the right thing, and then we’ll check your
code to make sure it does what your comments say it should. As a result, be sure your
comments are coherent, useful, and reflective of your approach to the problem. You may use
the template on the following page for your response, or you may write free-form on the back
of this page or the next.

Solution:

void Rev0(Queue & queue) {
int temp1, temp2; // These names are generic to avoid
Stack s; // giving you too many clues about
Queue q; // how we think you should use them.

temp2 = 0; // flag to indicate parity of # of 0s.

while (!queue.isEmpty()) { // process each queue value

temp1 = queue.dequeue(); // grab front of queue
if ((temp1==0) && (temp2==0)) { // see a 0 and we weren’t reversing

temp2 = 1; // start reversing next character
q.enqueue(temp1); // put the 0 on queue

}
else if ((temp1 == 0) && (temp2 == 1)) { // see a 0 and we were reversing

temp2 = 0; // flip reversal flag
while (!s.isEmpty()) { // complete the reversal by

q.enqueue(s.pop()); //putting stack values on queue
}
q.enqueue(temp1); // put the 0 on the queue

}
else if ((temp1 != 0) && (temp2 == 0)) // not reversing, just enqueue

q.enqueue(temp);
else if ((temp1 != 0) && (temp2== 1)) // reversing, push to reverse

s.push(temp);
}
while (!s.isEmpty()) { // empty s into q if we ran out of elements

q.enqueue(s.pop()); // in queue while pushing to s
}
queue = q; // relies on operator= in Queue class.

}

Grading scheme:

• 6 points for comments

• 14 points for correct code:

– 1 pt - main while loop
– 1 pt - check if element==0
– 1 pt -enqueue nonzero elts until first 0
– 1 pt -enqueue first 0
– 1 pt -push elts between zeros

– 1 pt -pop elts and enqueue them when second 0 is reached
– 1 pt -enqueue second 0 (after popped items)
– 1 pt -after big while loop terminated, pop any items left in s and enqueue

them
– 1 pt -make sure final result is in the Queue ”queue”

• If using boolean flag version

– 1 pt - initialize flag
– 1 pt - change flag when start reversing
– 1 pt - change flag when stop reversing
– 2pts - if statements all correct (either using or nested)

• If using nested while loops (5 pts):

– 3 pts - loops have correct guards, and handle edge cases correctly
– 2 pts - if statements all correct

• Miscellaneous deductions:

– -1 pt for changing variable names, unless such change is indicated on the
code segment we gave

– -1-2 pts for not storing the result of dequeue somewhere when using it
to check for zeros

– -2 pts for improper use of push/pop/enqueue/dequeue
– -1 pt each if any dequeue is done where the queue involved could possibly

be empty

(scratch paper, page 1)

(scratch paper, page 2)

class Stack { // partial class definition
public:

Stack();

void push(char e);
char pop();

bool isEmpty(); // returns true if the stack is empty

private:
// we’re not telling

};

class Queue { // partial class definition
public:

Queue();

void enqueue(char e);
char dequeue();

bool isEmpty(); // returns true if the queue is empty

private:
// we’re not telling

};

