
University of Illinois at Urbana-Champaign
Department of Computer Science

First Examination
CS 225 Data Structures and Software Principles

Fall 2012
Monday, October 1, 7-9p

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. No electronic aids are allowed.

• You should have 5 problems total on 20 pages. The last sheet is scratch paper; you may
detach it while taking the exam, but must turn it in with the exam when you leave.

• The points assigned to each problem are a rough estimate of the time it should take you to
solve the problem. Use your time wisely.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

• We will be grading your code by first reading your comments to see if your plan is good, and
then reading the code to make sure it does exactly what the comments promise.

• Please put your name at the top of each page.

Problem Points Score Grader

1 25

2 20

3 15

4 35

5 5

Total 100

1. [Pointers, Parameters, and Miscellany – 25 points].

MC1 (2.5pts)

Consider the following statements, and assume the standard iostream library has been in-
cluded:

int * s;

int t = 37;

*s = t;

cout << *s << endl;

What is the result of executing these statements?

(a) 37 is sent to standard out.

(b) The memory address of s is sent to standard out.

(c) This code does not compile.

(d) This code results in a runtime error.

(e) None of these options is correct.

MC2 (2.5pts)

Consider the following class definitions:

class Sport{

public:

virtual int loser();

private:

int score;

};

class Volleyball: public Sport {

public:

int winner();

};

Where could the assignment score = 20; appear for the private variable score?

(a) Both winner() and loser() can make the assignment.

(b) winner() can make the assignment, but loser() cannot.

(c) loser() can make the assignment, but winner() cannot.

(d) Neither winner() nor loser() can make the assignment.

(e) The answer to this question cannot be determined from the given code.

MC3 (2.5pts)

What is the output of the following sequence of C++ statements? (The sphere class interface
is included at end of the exam.)

sphere * a, * b;

a = new sphere(1.0);

b = a;

b->setRadius(2.0);

delete b;

a->setRadius(4.0);

sphere * c = new sphere(5.0);

b = new sphere(3.0);

cout << a->getRadius() << endl;

(a) 4.0

(b) 3.0

(c) An insidious runtime memory error.

(d) A compiler error on line a->setRadius(4.0);.

(e) A compiler error on line b = new sphere(3.0);

MC4 (2.5pts)

Consider this definition of the function horrible:

int * horrible(int & y) {

int x = y;

y = 15;

return &x;

}

Which of the following statements is true?

(a) This code is horrible because it returns the memory address of a local variable.

(b) This code is horrible because there is at least one type mismatch.

(c) This code is horrible because the parameter is not const int & y.

(d) This code is horrible for more than one of these reasons.

(e) This code is not horrible at all, despite its name.

MC5 (2.5pts)

void fac2(int x) { x = 2*x; }

void fac3(int * x) { *x = 3 * (*x); }

void fac5(int & x) { x = 5*x; }

int main() {

int z = 1;

fac2(z);

fac3(&z);

fac5(z);

cout << z << endl;

return 0; }

What is the result of compiling and executing this code (assume iostream is included)?

(a) 6 is sent to standard out.

(b) 10 is sent to standard out.

(c) 15 is sent to standard out.

(d) 30 is sent to standard out.

(e) None of these options is correct.

MC6 (2.5pts)

class Bear {

public: Bear() { cout << "Growl" << endl; }

~Bear() { cout << "Stomp stomp stomp" << endl; }

};

int main() {

Bear beary;

cout << "Run!" << endl;

return 0; }

What is the result of compiling and executing this code (assume iostream is included)?

(a) Run!

(b) Growl
Run!

(c) Growl
Run!
Stomp stomp stomp

(d) Run!
Stomp stomp stomp

(e) Garbage is printed to the terminal.

MC7 (2.5pts)

Consider the following class definition:

class Pumpkin {

public:

Pumpkin(const Pumpkin & other);

~Pumpkin();

// more public member functions

private:

double radius;

// more private member variables

};

Which of the following functions must also be implemented for the Pumpkin class for it to
function correctly?

(a) no parameter constructor

(b) operator=

(c) operator()

(d) setRadius

(e) operator delete

MC8 (2.5pts)

Using the templatized MyPair class defined in lecture, and the standard string class, which of
the following correctly declares a variable called closet which is a dynamic array of MyPairs
whose parameterized type is a string?

(a) MyPair<string> * closet;

(b) MyPair<string *> closet;

(c) MyPair * closet = new string[size]

(d) More than one of (a), (b), (c), are correct.

(e) None of (a), (b), (c), are correct.

MC9 (2.5pts)

Suppose class modPNG contains exactly one pure virtual function whose name is print. Also
suppose that class flipImage is a public modPNG that implements print.

Which of the following C++ statements will certainly result in a compiler error?

(a) modPNG a;

(b) modPNG * a = new modPNG;

(c) modPNG * a;

flipImage * b;

a=b;

(d) Exactly two of these will result in a compiler error.

(e) All three of (a) thru (c) will result in a compiler error.

MC10 (2.5pts)

Consider this slight modification of a snippet of code from a recent lecture (and assume all
STL classes are available):

struct animal {

string name;

string food;

animal(string n="blob", string f="you"): name(n), food(f) { }

};

int main() {

animal g("giraffe","leaves"), b("bear");

list<animal *> zoo;

zoo.push_back(&g); zoo.push_back(&b); //STL list insertAtEnd

for(list<animal *>::iterator it = zoo.begin(); it != zoo.end(); it++)

cout << (*it)->name << " " << (*it)->food << endl;

}

Which of the following describes the result when this function is compiled and run?

(a) There is a compiler error because there is no constructor matching the one called for
variable b.

(b) There is a compiler error because of a type mismatch in the parameterized type for the
list class.

(c) There is a runtime error because the iterator is dereferenced twice.

(d) The code sends “giraffe leaves” to standard out.

(e) The code sends “giraffe leaves” and “bear you” to standard out.

2. [MP2ish – 20 points].

A TARDIS (Time and Relative Dimension in Space) is a time traveling spaceship used by
the Time Lords of Gallifrey. It transports a set of people through time and space to their
destination. Unfortunately, because the TARDIS moves through time, it can’t rely on nature
to keep its occupants at the correct age. It would be a shame to arrive in London 5120 with
all of the occupants having aged three thousand years. To avoid that, a TARDIS keeps track
of the age of each of its occupants.

A TARDIS is implemented as a dynamically allocated array of pointers to strings, representing
the names of occupants, and a dynamically allocated array of doubles, representing the ages
of occupants (in Earth years).

#include <string>

using namespace std;

class TARDIS{

private:

string ** occupants;

double * ages;

int maxOccupants;

int populationSize;

// Lots of other member functions

public:

TARDIS(int capacity); // creates a new empty TARDIS object:

// sets maxOccupants equal to capacity,

// allocates arrays of size capacity for occupants/ages,

// and sets all uninitialized pointers to NULL

// Declaration of the operator+= function for this problem. (You will write this)

void letIn(const string & name, double age); //adds a person to the TARDIS

// Big Three declarations

// Lots of other member functions

};

If there are fewer than maxOccupants people inside the TARDIS, some of the occupants’
names may be NULL, in which case their corresponding ages are garbage. You may assume
that all pointers are valid. That is, they are either NULL or they point to an object of the
specified type. Also, please ensure that the inhabitants of the TARDIS are placed in the first
populationSize positions in each of the arrays.

In this question you will implement some of the member functions for the TARDIS class. Your
comments will be graded, and will be worth up to 1/3 of the total points for any part of
the problem. They should be coherent, useful, and reflective of your approach to the problem.

(a) (4 points) As a TARDIS travels through space and time, it keeps its occupants ages up-
to-date using the overloaded compound addition operator, operator+=. This operator
works by taking a single double parameter, the amount by which to increment each
occupant’s age.

For example, the following code updates the occupants’ ages during a 0.025 year trip:

TARDIS theDoctorsTardis(4); // setup

theDoctorsTardis.letIn("Amy Pond", 19.2);

theDoctorsTardis.letIn("River Song", 40.6);

theDoctorsTardis += 0.025; // you will be implementing operator+=

After this code executes, “Amy Pond” should have an age of 19.225, while “River Song”
will have an age of 40.625.

Write the operator+= function for the TARDIS class, as it would appear in tardis.cpp,
so that the above code will compile and work as specified.

_________ TARDIS::_______________(_______________ amount)

{

}

(b) (6 points) Write a private helper function called copy(const TARDIS & orig) for the
TARDIS class, as it would appear in tardis.cpp. copy should make the current object’s
member variables contain exactly the same data as that of the parameter orig, but its
memory should be completely independent.

void TARDIS::copy(const TARDIS & orig)

{

}

(c) (2 points) List two member functions of the TARDIS class that would employ the copy

helper function.

(d) (6 points) The letIn function puts a person into the TARDIS object. It takes a string

name and a double age, and puts those into the first available slot in the occupants array.

Since a TARDIS is bigger on the inside than it is on the outside, new occupants should

always be able to enter a TARDIS. Therefore, if the array is out of space, it should be

resized so that there is room for the new occupant. Your code should do only as much

copying of data as is necessary, and no more.

void TARDIS::letIn(const string & name, double age)

{

}

(e) (2 points) As mentioned above, if the TARDIS is out of space and a new occupant is
added, the arrays must be resized so that there is room for the new occupant. For one
new occupant, how long does this resizing take (big-O) in terms of n = maxOccupants?

3. [MP3ish – 15 points].

In each of the problem segments below, we have given you “before and after” models of
linked lists. Your task is to transform the “before” into the “after” using simple pointer
manipulations on the list nodes. Refer to the elements of the list nodes using the listNode

class below. Your solutions should follow these guidelines:

• You may declare listNode pointer variables to use in navigating the lists. When you
are finished with them, just set them to NULL.

• You must never refer to the data member of the listNode class.

• You may write loops to simplify your solutions, but your answers don’t need to be
general... they just need to work on the given lists. (Don’t worry about even/odd
length, or empty lists, for example.)

• Any pointer variables named in the picture can be used in your solution.

• Only part (d) uses the prev pointer. Just ignore it for parts (a)-(c).

struct listNode {

string data;

listNode * next;

listNode * prev; //NULL except in part (d)

listNode(string e): data(e), next(NULL), prev(NULL) {}

};

(a) (2 points)

Before:' A)er:'
1'

2'

3'

head

2'

3'

1'

head

(b) (3 points)
head

5 2 8 4 7...

split

head

5 2 8

4 7

...
split

After:

Before:

(c) (5 points)

h1

A B

After:

Before:

h2

1 2

h1

A 1

h2

B 2

(d) (5 points)

After:

Before: 1 2 3 ...head
126 127 128 tail

128 127 126 ...head
3 2 1 tail

4. [MaxList – 35 points].

In this problem we will be implementing and investigating a variation of a linked list that we
will call a MaxList. As illustrated in the figure below, this list has a head pointer and a head
sentinel. In addition, each MaxListNode has non-negative integer data, a next pointer, and
a maxPrev pointer that points to the maximum valued node before and including the current
node. Look carefully at the picture to make sure you understand the structure. (Note: this
problem has parts (a) through (l). (a)-(c) are straightforward, (d)-(f) are interdependent
and challenging, and (g)-(l) are general knowledge and not deeply dependent on the previous
parts.)

0

head

5 2 4 7

(a) (2 points) In this diagram, we have just invoked the function call insertAt(3,8) which
places the value 8 in the third position in the list. Draw the accurate maxPrev pointers,
notice which ones may change (depending on the value inserted), and which ones will
certainly not change.

0

head

5 2 4 78

(b) (2 points) In this diagram, we have just invoked the function call insertAt(3,3) which
now places the value 3 in the third position in the list. Draw the accurate maxPrev

pointers. In this example, you should pay particularly close attention to how the maxPrev
pointer is set for the new node.

0

head

5 2 8 43 7

The following code is a partial definition of the MaxList class. (Continued on next page.)

class MaxList {

public:

MaxList(); // YOU’LL DEFINE

// the big 3: (given) copy ctor, dtor, and op=

int size() const; // (given) the number of data elts in list

void insertAt(int k, int ndata); // YOU’LL DEFINE

private:

class MaxListNode {

public:

MaxListNode(int ndata);

MaxListNode * next;

MaxListNode * maxPrev;

int data;

};

MaxListNode * head;

int length;

//find: (given) walks k steps from curr

MaxListNode * find(int k, MaxListNode * curr);

//ptrToMaxData: (given) compares data in node1 and in node2 and returns

// the node whose data value is greatest (node2 if they’re equal).

MaxListNode * ptrToMaxData(MaxListNode * node1, MaxListNode * node2);

void fixPtrsAfter(MaxListNode * curr); // YOU’LL DEFINE

void insertAfter(MaxListNode * curr, int ndata); // YOU’LL DEFINE

};

(c) (3 points) The diagram below illustrates the state of memory after an empty MaxList

is declared (i.e. MaxList fancyList;). Write the no-argument constructor for the
MaxList class as it would appear in the maxlist.cpp file. Note that the maxPrev pointer
is set to point to the sentinel itself, which means that the maxPrev pointer is set correctly
for the sentinel node (whose data value is 0). The length of an empty MaxList is 0.

0

head

____________________ :: MaxList()

{

(d) (5 points) Please implement the fixPtrsAfter function. This function takes a pointer
to a MaxListNode whose maxPrev pointer is set correctly, and it travels to the end of
the list on valid next pointers, updating the maxPrev pointers as it goes. Assume that
the input parameter is not NULL, that all next pointers are valid, and that the list is
terminated by a NULL valued next pointer. You may find the ptrToMaxData comparison
function to be useful. (As a reference, our solution has 3 lines of code and uses only the
function parameters–no local or member variables. Remember that simple code is easier
to grade, and everyone likes a happy grader!)

void MaxList::fixPtrsAfter(MaxListNode * curr){

(e) (5 points) Next, implement the insertAfter function. The function creates a new node
with value ndata, and inserts it into the list after the node pointed to by parameter curr
(which will not be NULL). This function is also responsible for making sure all maxPrev
pointers are set appropriately. You may use MaxList member functions in your solution.

void MaxList::insertAfter(MaxListNode * curr, int ndata) {

(f) (5 points) Finally, implement the public insertAt function so that it behaves as de-
scribed in parts (a) and (b) of this problem. For simplicity, you may assume that the
list is always long enough to accept a new value in position k. As illustrated above, the
first data element occupies position 1, the second occupies position 2, etc. You may use
any of the private member functions you would like. Don’t forget to update the length

data member!

void MaxList::insertAt(int k, int ndata){

(g) (2 points) Imagine an implementation of a function called insertAtFront that adds a
new value to the front of the list. What is the running time of such a function in the
worst case? (Circle the appropriate answer.)

constant time (O(1)) linear time (O(n))

(h) (3 points) Briefly explain why the find function is in the private: section of the class
definition.

(i) (2 points) Briefly explain the role of the sentinel node in the implementation. Which
functions were affected and how?

(j) (2 points) Write the function signature for the copy constructor as it would appear in
maxlist.cpp.

(k) (2 points) Does the MaxList class require a destructor? Briefly justify your answer.

(l) (2 points) Describe the purpose and effect of the keyword const in the declaration for
the function int size() const;.

5. [Miscellaneous – 5 points].

(a) (5 points) For this problem, you will be a code critic. Please answer the questions below
about the following sphere class member function. setPicture is supposed to change
the value of member variable thePicture. The adapted sphere class appears at the
end of the exam.

void sphere::setPicture(PNG newPicture) {

thePicture = newPicture;

return;

}

i. (2 points) Comment on the type specification in the parameter list. Is there a better
way to specify that parameter?

ii. (3 points) What does the assignment thePicture = newPicture; assume about
the PNG class? In a few words, describe the consequence if that assumption is false.

(b) (0 points) Please give us feedback about the course, entering your responses on items 11
thru 13 of the scantron form you used for your multiple choice responses:

i. On a scale of 1 to 5, how much are you learning in the class? (1 is not much, 5 is a
ton)

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

ii. On a scale of 1 to 5, how is the pace of the course so far? (1 is too slow, 5 is too
fast)

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

iii. On a scale of 1 to 5, rate your general satisfaction with the course. (1 is profoundly
dissatisfied, 5 is happy) If your response is not 4 or 5, please suggest a specific
improvement we can make.

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

class sphere {

public:

sphere();

sphere(double r);

double getDiameter() const;

double getRadius() const;

void setRadius(double r);

void setPicture(PNG newPicture);

private:

double theRadius;

PNG thePicture;

};

scratch paper

