
University of Illinois at Urbana-Champaign
Department of Computer Science

First Examination
CS 225 Data Structures and Software Principles

Sample Exam 1
75 minutes permitted

Print your name, netID, and lab section day/time neatly in the space provided below; print
your name at the upper right corner of every page.

Name: SOLUTIONS

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. In addition, you are not allowed to use any
electronic aides of any kind.

• Do all 5 problems in this booklet. Read each question very carefully.

• You should have 7 sheets total (the cover sheet, plus numbered pages 1-12). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave. The page before the scratch paper has the member functions of the Array
class and the List class from the MPs.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem Points Score Grader

1 15

2 20

3 20

4 15

5 20

Total 90



CS 225 First Exam—Sample Exam 1 1 Name:

1. [Assignment Operator – 15 points].

Given the following class:

// this would be in the .h file
template <class Etype>
class Map {
private:

Array<Etype> items;
Array<String*> labels;
Etype* primaryValue;

public:
Map();
const Map& operator=(const Map& origVal);
// ...plus other functions we don’t care about here

};

Assume that all pointers that are in any way part of the implementation of Map, get set to
either NULL or the address of a dynamically object before you call the assignment operator.
(Or in other words, assume that when you call the assignment operator, no pointer is pointing
to garbage memory.) Write the definition code for the assignment operator (operator=) for
the class Map.

SOLUTION ON NEXT PAGE



CS 225 First Exam—Sample Exam 1 2 Name:

(Assignment Operator, continued)

const Map<Etype>& Map<Etype>::operator=(const Map<Etype>& origVal)
{

if (this != &origVal)
{

for (int i = labels.Lower(); i <= labels.Upper(); i++)
delete labels[i];

delete primaryValue;

items = origVal.items;
labels = origVal.labels; // will size it properly
for (int i = labels.Lower(); i <= labels.Upper(); i++)

labels[i] = new String(*((origVal.labels)[i]));
primaryValue = new Etype(*(origVal.primaryValue));

}
return *this;

}



CS 225 First Exam—Sample Exam 1 3 Name:

2. [Analysis – 20 points].

(a) Given the following code, using a singly-linked implementation of the List ADT you
saw on MP3, express (using big-O notation) the order of growth of the running time of
the code below, in terms of n. Prove your answer is correct (i.e. explain your answer in
enough detail to be convincing). (10 points)

List<int> theList;
for (int i = 1; i <= n; i++) // <--- this is the n referred to above

theList.InsertAfter(i);
theList.Tail();
for (int i = 1; i < theList.Length(); i++) {

cout << theList.Retrieve() << endl;
theList--;

}
cout << theList.Retrieve(); // prints first element
return 0;

}

ANSWER: The running time isO(n2). Inserting each of the n elements will take constant
time, and since there are n of those insertions, the first loop is linear time. The call to
the Tail() function would either be constant time (if there were a tail pointer as part
of the implementation) or else linear time (if there were NOT a tail pointer as part of
the implementation and you had to traverse all the way through the list to get to the
end). Either way, the running time for the first four lines together is linear time.
The second loop will perform a Retrieve() on every node except the first node, starting
at the last node and moving backwards. Each Retrieve() is constant time, but the
act of moving backwards one position will be linear time, since you need to start at
the beginning and traverse to “the node before the current position” in order to move
backwards on a singly-linked list. So you are running a linear-time body of the loop n-1
times, and that is overall quadratic time. (If you want to be more precise, the first time
theList--; is run, it will require traversing down n-1 nodes, the second time it is run
requires a traversal down n-2 nodes, the third time it is run requires a traversal down
n-3 nodes, and so on. And the sum (n-1) + (n-2) + (n-3) + ... + 1 turns out to
be a quadratic function of n.)
So, since linear plus quadratic is quadratic, the running time is quadratic.
(You would not need to be quite so verbose in your own solution.)



CS 225 First Exam—Sample Exam 1 4 Name:

(b) Imagine we have the following array-based implemenation of a stack:

class Stack {
private:

Array<int> theStack;
int numElements;

... // rest of class, including public functions

where theStack.Size() gives you the size of the array, which will be indexed from 1
through theStack.Size(), numElements stores the number of elements in the actual
stack itself (could be less than the total amount of space in the array), and the stack
is placed in order in the array so that the top element is at theStack[1], rather than
at theStack[numElements] as in lecture. You have no other member variables for this
Stack class.
Given a stack of size n implemented as above, what is what is the order of growth of the
running time of Pop(), in terms of n? Express your answer in big-O notation. Prove
your answer (i.e. explain your answer in detail sufficient enough to be convincing).
(10 points)

ANSWER: The running time will be O(n). Since there are no additional member vari-
ables, you cannot be using a “circular array” to implement this stack. And so the only
way to actually get a Pop() operation to work, is to shift all the elements of the stack
in the index range 2 through numElements, to the left by one cell, thus moving that
range to the index range 1 through numElements-1. Since it takes constant time to shift
each value one cell to the left, and we shift n-1 values, the overall running time must be
linear.
(You would not need to be quite so verbose in your own solution.)



CS 225 First Exam—Sample Exam 1 5 Name:

3. [Move Tens – 20 points].

You have the following ListNode class:

class ListNode {
public:

int element;
ListNode* next;
ListNode* prev;

};

and a doubly-linked list made up of such nodes, with a ListNode pointer head to the first
node and with the first node’s prev and the last node’s next equalling NULL. We will assume
it is publicly accessible, rather than nested in a class, for this problem.

Write a function MoveTens which has one parameter and returns nothing. The parameter
will be a reference to a ListNode pointer. This pointer will point to the head node of a
doubly-linked list (and thus would be NULL if the list were empty). This list will hold only
positive integers, and will have the prev of the first node and the next of the last node both
pointing to NULL.

This function should move every node containing a 2-digit number to the start of the list. All
the nodes you move should remain in the same order relative to each other, and all the nodes
you do not move should remain in the same order, relative to each other. For example, if the
parameter list had been 4->502->10->12->7->33->5->821->11->103->NULL, then you are
moving 10, 12, 33, and 11 to the front of the list but keeping them in that order (10, 12, 33,
11). And the values you did not move stay in the same order they were in to begin with. So, af-
ter the function has run, the list should be 10->12->33->11->4->502->7->5->821->103->NULL.

Whatever linked list this results in, the head parameter should be pointing to the first node
of that list when you are done.

void MoveTens(ListNode*& head) {
// your code goes here

SOLUTION ON NEXT PAGE



CS 225 First Exam—Sample Exam 1 6 Name:

(Move Tens, continued)

void MoveTens(ListNode*& head) {
// your code goes here
ListNode* temp = head;
Listnode* temp2;
ListNode* newHead = NULL;
ListNode* newTail = NULL;
while (temp != NULL) {

temp2 = temp->next; // save value *after* the current one
if ((temp->element >= 10) && (temp->element < 100)) {

// remove node from original list
if (temp->prev != NULL) // if there’s a prev node

temp->prev->next = temp->next; // prev node should point to next node
else // otherwise, this is first node, so

head = head->next; // next node is new first node

if (temp->next != NULL) // if there’s a next node
temp->next->prev = temp->prev; // next node should point to prev node

// append node to end of new list
if (newHead == NULL) { // first node of new list

newHead = newTail = temp;
newHead->prev = NULL;

}
else { // not first node of new list

newTail->next = temp;
temp->prev = newTail;
newTail = temp;

}
}
temp = temp2; // now make our "saved value" from before, the current value

}
if (head != NULL) // if there’s still some of old list left

head->prev = newTail; // point first node of old list to last node of new

if (newTail != NULL) { // if there’s anything in the new list
newTail->next = head; // last node of new list points to beginning of old,
head = newHead; // and the "head" pointer points to start of new

}
}



CS 225 First Exam—Sample Exam 1 7 Name:

4. [Generic Functions – 15 points].

(a) You are given the following generic function:

template <class Iter>
void printEveryOther(Iter first, Iter last) {

while (first != last) {
cout << *first << " ";
first++;
if (first != last)

first++;
}
cout << "the end!" << endl;

}

Furthermore, you have a class list as seen on the MPs (i.e. with a nested iterator
class, and you have made the declaration:

list<int> theList;

and then inserted values such that the list looks as follows (where the asterisk indicates
the null position at the end of the list):

2 8 3 9 4 0 3 5 7 1 6 *

Write some code that uses iterators for the list theList that we declared above, and the
template function above, to print the following line of text. Note that no iterators are
declared yet; you will need to do that yourself. (8 points)

8 9 0 5 the end!

list<int>::iterator it1, it2;
it1 = theList.begin();
it1++;
it2 = theList.end();
it2--;
it2--;
printEveryOther(it1, it2);



CS 225 First Exam—Sample Exam 1 8 Name:

(b) Now, we want to change the generic function from part (a) to the following:

template <class Iter, class Comparer>
void VerifyAndPrintEveryOther(Iter first, Iter last, Comparer check) {

while (first != last) {
if (check(*first))

cout << *first << " ";
first++;
if (first != last)

first++;
}
cout << "the end!" << endl;

}

You want to write a class whose objects can be passed as the third argument to the above
function, when the first two arguments above are iterators that point to collections of
integers (for example, iterators to lists of integers, or iterators to vectors of integers, or
etc.). The class should be such that the check(*first) expression above evaluates to
1 if *first is greater than or equal to 5, and returns 0 otherwise. It is okay to write
the definition for this class right into the class declaration itself (i.e. you don’t need to
divide things up into a .h and .cpp). (7 points)

class Foo
{

int operator()(int value)
{

return (value >= 5);
}

};



CS 225 First Exam—Sample Exam 1 9 Name:

5. [Stack and Queue Interfaces – 20 points].

Imagine you are given a standard Stack class and Queue class, each of which also has a
Size() function that tells you how many items are in the data structure, and a no-argument
constructor that initializes the data structure to be empty.

You want to write a function Thirds which takes as an argument, a reference to a Queue.
The function should break the collection of elements inside the queue into three equal-sized
pieces (If the number of elements is not a multiple of three, then the piece closest to the front
gets an extra value and, if there is an additional extra value, the middle section would get
that one.) The Queue should be changed so that the second section of the Queue is reversed,
and the first and third sections are swapped. For example, given the following queue:

front rear
10 -2 0 5 7 2 -8 3 4 14 1

you want to change the queue into the following:

front rear
4 14 1 3 -8 2 7 10 -2 0 5
--------- ------------ --------------
former reversed former
third second first
section section section

The catch is that we’ve declared a few local integers below for you to use (you don’t have
to use all of them, we’ve just given them to you in case you need them), and the only other
local variables you can create and use are new Queues and new Stacks.

void Thirds(Queue<int>& param) {
int temp1, temp2, temp3;
// your code goes here

SOLUTION ON NEXT PAGE



CS 225 First Exam—Sample Exam 1 10 Name:

(Stack and Queue Interfaces, continued)

void Thirds(Queue<int>& param) {
int temp1, temp2, temp3;
// your code goes here

temp1 = param.Size()/3;
if (param.Size() % 3 != 0)

temp1++; // size of front section
temp2 = param.Size()/3;
if (param.Size() % 3 == 2)

temp2++; // size of middle section

Queue<int> frontHolder;
Stack<int> reverser;
for (temp3 = 1; temp3 <= temp1; temp3++)

frontHolder.Enqueue(param.Dequeue());

for (temp3 = 1; temp3 <= temp2; temp3++)
reverser.Push(param.Dequeue());

for (temp3 = 1; temp3 <= temp2; temp3++)
param.Enqueue(reverser.Pop());

for (temp3 = 1; temp3 <= temp1; temp3++)
param.Enqueue(frontHolder.Dequeue());

}



CS 225 First Exam—Sample Exam 1 11 Name:

class Array:
Array(); // creates array of size 0
Array(int low, int hi); // creates array with index range (low, hi)
Array(const Array& origVal); // copy constructor
~Array(); // destructor
const Array& operator=(const Array& origVal); // assignment operator
const Etype& operator[](int index) const;
Etype& operator[](int index);
void Initialize(Etype initElement);
void SetBounds(int low, int hi); // changes bounds of array
int Size() const; // returns number of indices in index range
int Lower() const; // returns lower bound of index range
int Upper() const; // returns upper bound of index range

class List:
List(); // creates empty list
List(const List& origVal); // copy constructor
~List(); // destructor
const List& operator=(const List& origVal); // assignment operator
void Clear(); // empties an existing list
void InsertAfter(const Etype& newElem); // inserts after current value
void InsertBefore(const Etype& newElem); // inserts before current value
void Remove(); // removes current value
void Update(const Etype& updateElem); // changes current value to parameter value
void Head(); // changes current marker to indicate first value
void Tail(); // changes current marker to indicate last value
List& operator++(int); // moves current marker one position forward
List& operator--(int); // moves current marker one position backward
const Etype& Retrieve() const; // returns the current value
int Find(const Etype& queryElem); // returns 1 if parameter is in list, else 0
int Length() const; // returns number of elements in list
void Print() const; // prints list to screen



CS 225 First Exam—Sample Exam 1 12 Name:

(scratch paper)


