
University of Illinois at Urbana-Champaign
Department of Computer Science

Third Examination
CS 225 Data Structures and Software Principles

Sample Exam 1
75 minutes permitted

Print your name, netID, and lab section day/time neatly in the space provided below; print
your name at the upper right corner of every page.

Name: SOLUTIONS

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. In addition, you are not allowed to use any
electronic aides of any kind.

• You should have 6 sheets total (the cover sheet, plus numbered pages 1-10). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem Points Score Grader

1 20

2 20

3 20

4 30

Total 90

CS 225 Third Exam—Spring, 2004 1 Name:

1. [Ghost of Euler – 20 points].

You have the following EdgeNode class:

class EdgeNode {
public:

int index; // index of target vertex
EdgeNode* next; // ptr to next edge

};

Furthermore, you have a variable of type Array<EdgeNode*> that is indexed from 1 to the
size of the array (given by the Size() method in the Array class). The array is an adjacency
list implementation of a graph, of the kind we first discussed in lecture; the vertices have
indices from 1 to Size().

You want to write a method numOddDegree which has one parameter, a reference to an
Array<EdgeNode*> as described above. You can assume this adjacency list represents an
undirected graph. You want to return the number of vertices with odd degree. (The degree
of a vertex in an undirected graph, is the number of edges which that vertex is an endpoint
for. So, you want to know how many vertices are endpoint to an odd number of edges.) You
can assume the graph has no self-loops (i.e. no vertex has an edge to itself.)

int numOddDegree(Array<EdgeNode*>& graph) {
// your code goes here
int numOdd = 0;
int currentVert = 1;
while (currentVert <= graph.Size()) {

EdgeNode* trav = graph[currentVert];
int numEdges = 0;
while (trav != NULL) {

trav = trav->next;
numEdges++;

}
if (numEdges % 2 == 1)

numOdd++;
currentVert++;

}
return numOdd;

}

CS 225 Third Exam—Spring, 2004 2 Name:

(Ghost of Euler, continued)

CS 225 Third Exam—Spring, 2004 3 Name:

2. [Vertices Nearby – 20 points].

You are given an adjacency matrix implementation of an unweighted, directed graph – the
graph has vertices labelled with indices 0 through n-1, and you are given the value n and a
two-dimensional array with n rows and n columns, both indexed from 0 through n-1. You
want to write a method that takes those two values (the integer n and an int** to the
two-dimensional array) and returns a 1 if the distance from any vertex to any other vertex is
always 2 or less, and returns a 0 if there is at least one vertex for which the minimum distance
to some other vertex is 3 or more. You are allowed to create additional one-dimensional arrays
if you need to.

int DistanceCheck(int** graph, int n) {
// your code goes here
int thereIsNotABadVertexYet = 1;
int currVertex = 0;
int* marks = new int[n];
while ((thereIsNotABadVertexYet) && (currVert < n)) {

for (int i = 0; i < n; i++)
marks[i] = 0;

marks[currVert] = 1;
for (int i = 0; i < n; i++) {

if (graph[currVert][i] == 1) {
marks[i] = 1; // mark everything one away from currVert
for (int j = 0; j < n; j++)

if (graph[i][j] == 1)
marks[j] = 1; // mark everything one away from what is

// one away from currVert
}

}
int i = 0;
while ((thereIsNotABadVertexYet) && (i < n))

if (marks[i] == 0)
thereIsNotABadVertexYet = 0;

else
i++;

}
if (thereIsNotABadVertexYet == 1)

currVert++;
}
delete[] marks;
return (currVert == n);

}

CS 225 Third Exam—Spring, 2004 4 Name:

(Vertices Nearby, continued)

CS 225 Third Exam—Spring, 2004 5 Name:

3. [Analysis – 20 points].

(a) You are given a graph which is implemented by an adjacency matrix. This matrix has
V rows and V columns, and represents a graph with V vertices and E edges. What is the
order of growth of the worst-case running time for adding a vertex to the graph? Express
your answer in Big-O notation and explain convincingly why your answer is correct.

You would need to create a new 2-D array of V+1 rows and V+1 columns, copy the V 2

values from the old array into the new array, and then initialize the new column and
row to 0. Copying the V 2 values will be constant-time each, since we are reading and
writing to arrays; that means the copying costs are O(V 2) total. writing 0 into every
cell in a row of length V+1 is O(V) time, as is writing 0 into every cell of a column of
length V+1. Therefore the total time is O(V 2 + V + V) which is O(V 2).

(b) You are given a graph which is implemented via an adjacency list. This adjacency list is
of the kind we first discussed in class – i.e. an array of vertices, with each cell of the array
pointing to a linked list of edge nodes. You want to find the vertex with the greatest
number of departing edges. What will be the worst-case running time of this algorithm,
in terms of V and E? Express your answer in big-O notation and explain convincingly
why your answer is correct.

The linked list of edge nodes that each cell of the array points to, is the list of departing
edges for the vertex that cell represents. So another way to ask this question is, “Which
array cell has the longest linked list?” That can be done by simply calculating the length
of each linked list by traversing down the lists one by one – and the sum of the lengths
of the lists is the sum of all departing edges in the graph (or, if it is an undirected graph,
the sum of the lengths of the list is double the number of edges in the graph). So there’s
O(E) work there. It’s also possible some vertices have no departing edges and yet we’d
need to inspect those vertices anyway, so you’ve got the O(V) traversal down the array
to add in as well, since even though usually V < E, that won’t always be the case. So, the
total run time involves looking at each array cell and each list node, once – or O(V +E).

CS 225 Third Exam—Spring, 2004 6 Name:

4. [Algorithms – 30 points (6 points each)].

(a) Give an example of a undirected, weighted graph that has two edges of equal weight, for
which there is still a unique minimum spanning tree.

There are many examples of such a graph. As a trivial example, any undirected, weighted
graph that is really a tree, and has two equal-weight edges, has a unique minimum
spanning tree – the entire graph itself is the only possible spanning tree, since the graph
itself is a tree.

(b) In the depth-first-search-based implementation of topological sort, if we moved the “post-
visit” code to instead be “pre-visit” code (i.e. if we took the code we run after we
explore a vertex’s neighbors, and instead run it before we explore a vertex’s neighbors),
the algorithm will no longer work. Explain why.

The algorithm relied on the idea that, since you were assigning numbers to vertices from
highest number to lowest number, as long as you assigned a number to a vertex after
you assigned to all its neighbors, you guaranteed that your vertex got a lower number
than its neighbors. If you instead assign to the vertex before exploring all its neighbors,
perhaps there is a neighbor that has not been reached yet, that will now be assigned
a number after your vertex gets a number...and thus will get a lower number than its
prerequisite vertex, which is not allowed.

CS 225 Third Exam—Spring, 2004 7 Name:

(c) When we implement breadth-first-search, it is important that we mark a vertex as “en-
countered” before it is enqueued, rather than after it is dequeued. Explain why it is
important – i.e. explain why we couldn’t instead choose to mark a vertex “encountered”
after dequeueing it.

When we dequeue a vertex, we will proceed to inspect its neighbors. If one of those
neighbors is on the queue already, but not marked “encountered”, we would add it to
the queue a second time. And therefore, we would ultimately dequeue that neighbor
twice and process it twice. Marking vertices as “encountered” once we have first reached
them prevents us from adding a vertex to the queue multiple times, since every time we
reach that vertex after the first time we reach it, it will already have the “encountered”
flag set and we will therefore ignore that vertex.

CS 225 Third Exam—Spring, 2004 8 Name:

(d) Explain cycle detection for Kruskal’s algorithm. That is, explain why disjoint sets are
used for this part of the algorithm (i.e. explain what the equivalence relation is that
we are trying to model with our disjoint sets structure), and explain how the disjoint
sets structure gets used to figure out whether to accept or reject an edge that is being
considered.

The equivalence relation we are trying to model is “two vertices are in the same connected
component of the MST we are in the midddle of building”. Certainly every vertex is
in the same connected component as itself, and if A and B are in the same connected
component, then it means B and A are as well. Futhermore, by the very defintion of
connection, if A and B are in the same connected component and B and C are, then A
and C must be. So we have reflexivity, symmetry, and transitivity.
As a result, we can use the disjoint set structure to determine if two vertices are in the
same connected component – if they are in the same set, they are in the same connected
component, and if they are in different sets, then they are in different connected compo-
nents. Every time we add an edge between two connected components, we are merging
them into one connected component, and likewise we should union the disjoint sets that
represent them. And, if an edge is going to be added between two vertices that are
already conected (i.e. already in the same connected component), that would be a cycle,
so saying “these two vertices are in the same connected component” (which is saying
“these two vertices are in the same set”) is the same as saying “these two vertices are
already connected” which is the same as saying, “there would be a cycle created if these
two vertices are connected again, by putting an edge between them”.

CS 225 Third Exam—Spring, 2004 9 Name:

(e) For the given graph, run Dijkstra’s algorithm, indicating in the table below the distances
at each vertex at the end of each step (dv), and whether or not the vertex has been marked
known yet at the end of each step (kv).

A B C D E F G
A 0 12 0 0 0 0 18

B 0 0 0 0 5 0 1

C 0 17 0 0 4 0 12

D 0 0 3 0 0 13 0

E 9 0 0 5 0 10 0

F 3 8 0 0 0 0 0

G 2 0 0 0 0 0 0

V dv kv dv kv dv kv dv kv dv kv dv kv dv kv dv kv

A ∞ 0 9 0 9 0 9 0 9 1 9 1 9 1 9 1
B ∞ 0 ∞ 0 ∞ 0 25 0 21 0 18 0 18 1 18 1
C ∞ 0 ∞ 0 8 0 8 1 8 1 8 1 8 1 8 1
D ∞ 0 5 0 5 1 5 1 5 1 5 1 5 1 5 1
E 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
F ∞ 0 10 0 10 0 10 0 10 0 10 1 10 1 10 1
G ∞ 0 ∞ 0 ∞ 0 20 0 20 0 20 0 19 0 19 1
- Start Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

CS 225 Third Exam—Spring, 2004 10 Name:

(scratch paper)

