
University of Illinois at Urbana-Champaign
Department of Computer Science

Final Examination
CS 225 Data Structures and Software Principles

Sample Exam 2
3 hours permitted

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. No electronic aids are allowed, either.

• You should have 11 sheets total (the cover sheet, plus numbered pages 1-21). The last sheet
is scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper functions to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem Points Score Grader

1 60

2 40

3 20

4 20

5 20

6 20

Total 180



CS 225 Final Exam—Sample Exam 2 1 Name:

1. [Algorithms - 60 points (6 points each)].

(a) Explain how the middle node of a singly-linked list can be removed in constant time,
given a pointer to that node.

(b) In a “perfect” skiplist, we expect to never have to traverse forward more than one node
on any level. Why is this?



CS 225 Final Exam—Sample Exam 2 2 Name:

(c) In a perfect binary tree that is also a binary search tree, where is the median value of
the tree located? Justify your answer.

(d) You insert the values 1, 6, 2, 5, 3, and 4, in that order, into an empty red-black tree.
Counting a “double rotation” as one rotation, how many total rotations are needed over
the course of these six insertions?



CS 225 Final Exam—Sample Exam 2 3 Name:

(e) How do we “mark a vertex known” in the heap implementation of Dijkstra’s Algorithm
– that is, how do we ensure that a vertex we have selected in one step will never again
be selected in a future step – and how long does this process take, for one vertex?

(f) Given a graph that is both undirected, and connected (i.e. given any two vertices, there
is a path between them in the graph), can breadth-first-search ever produce a spanning
forest instead of a spanning tree? Justify your answer.



CS 225 Final Exam—Sample Exam 2 4 Name:

(g) Consider a hash table where h(x) = x mod 11 and h2(x) = 5 − x mod 5. Insert the
values 80, 58, 30, 5, 21, and 27, in that order, into the hash table. Use double hashing
to resolve collisions. We have provided the relevant values of the two hash functions, in
the table below.

80 58 30 5 21 27
h(x) 3 3 8 5 10 5
h2(x) 5 2 5 5 4 3

0 1 2 3 4 5 6 7 8 9 10

(h) How many “array nodes” (as opposed to leaves containing info records for our keys,
rather than arrays) would there be in a Patricia Tree containing the words cart, car,
carthage, cardio, and cartoon?



CS 225 Final Exam—Sample Exam 2 5 Name:

(i) Explain convincingly that a red-black tree removal will never require more than three
single rotations. (You can assume anything we said in class about the individual cases
of the algorithm is true; for example, if some case involves one rotation, you can simply
state that such a case involves one rotation, without justifying it.)



CS 225 Final Exam—Sample Exam 2 6 Name:

(j) For the given graph, run Prim’s algorithm, indicating in the table below the distances at
each vertex at the end of each step (dv), and whether or not the vertex has been marked
known yet at the end of each step (kv).

A B C D E F G
A 0 7 8 9 0 0 0

B 7 0 0 5 1 0 0

C 8 0 0 4 0 6 0

D 9 5 4 0 2 3 11

E 0 1 0 2 0 0 12

F 0 0 6 3 0 0 10

G 0 0 0 11 12 10 0

V dv kv dv kv dv kv dv kv dv kv dv kv dv kv dv kv

A ∞ 0
B 0 0
C ∞ 0
D ∞ 0
E ∞ 0
F ∞ 0
G ∞ 0
- Start Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7



CS 225 Final Exam—Sample Exam 2 7 Name:

2. [Analysis – 40 points (10 points each)].

(a) You have a pointer head to a doubly-linked list of n nodes, made up of nodes of the
ListNode class on page 19. You need to do three things: (1) explain what the following
code does, (2) tell us what the the order of growth of the worst-case running time of
the following code is (in big-O notation), and (3) explain your answer to (2) in enough
detail to be convincing.

// you are given the pointer ‘‘head’’ to a list of size n
ListNode* temp = NULL;
ListNode* latestHead = NULL;
while (head != NULL) {

ListNode* toEnd = head;
while (toEnd->next != NULL)

toEnd = toEnd->next;
if (toEnd->prev != NULL)

toEnd->prev->next = NULL;
else

head = NULL;
toEnd->prev = temp;
if (temp != NULL)

temp->next = toEnd;
else

latestHead = toEnd;
temp = toEnd;

}



CS 225 Final Exam—Sample Exam 2 8 Name:

(b) Imagine you have a red-black tree, and at each node of this red-black tree, you have an
array and an integer. The red-black-tree is arranged by the integer in each node (i.e.
that integer is the search key for the tree, i.e. an in-order traversal of the red-black-tree
would give you the integers in numerical order). You look up a pair of numbers in this
structure, by finding the first number of the pair in the red-black tree, and then once
you have found that number in some red-black tree node, you search the array at that
node for the second number in the pair. If you have n nodes in the tree, and each array
is of size m, what is the order of growth of the worst-case running time of the above
procedure? Express your answer in big-O notation, and explain your answer in enough
detail to be convincing.



CS 225 Final Exam—Sample Exam 2 9 Name:

(c) Suppose you want to add a vertex to graph of V vertices and E edges. Assume that this
graph is implemented using an adjacency matrix of exactly the right size needed for the
graph. Express (using big-O notation) the order of growth of the worst-case running
time of this operation, in terms of V and E. Explain your answer in enough detail to be
convincing.



CS 225 Final Exam—Sample Exam 2 10 Name:

(d) Explain why the time to lookup a value in a trie does not depend on how many values
there are in the trie.



CS 225 Final Exam—Sample Exam 2 11 Name:

3. [Range Removal - 20 points].

You have the ListNode class seen on page 19 of this exam. You want to write a function
RangeRemoval that will have three parameters. The first is a reference to a pointer to the
starting node of a doubly-linked list made up of the above nodes. The next variable of the
last node and the prev variable of the first node are both NULL, and the list is sorted from
lowest to highest element. The second and third parameters are a low and high value defining
a range of integers (you can assume the second parameter is less than or equal to the third
parameter).

Your task is to remove all values in the list, whose elements are between the second and third
parameters, inclusive, from the parameter list, and to return a sorted list of those removed
values. For example, if the list were of size 12 and was as follows:

head->0->1->2->4->5->7->8->9->11->12->15->17->NULL

and your second and third parameters were 6 and 12, respectively, then the parameter list
becomes:

head->0->1->2->4->5->15->17->NULL

and you return a pointer to the start of the list:

---->7->8->9->11->12->NULL

where the first node’s prev and the last node’s next variables are both NULL and the values
are sorted.

You are NOT allowed to write to the element variable of any of the nodes; you must complete
this method by rearranging the nodes themselves. When you are done, the parameter list
should still be doubly-linked, the next variable of the first node and the prev variable of the
last node should both point to NULL, and the parameter should point to the new front node
of the list.

ListNode* RangeRemoval(ListNode * & head) {
// your code goes here



CS 225 Final Exam—Sample Exam 2 12 Name:

(Range Removal, continued)



CS 225 Final Exam—Sample Exam 2 13 Name:

4. [Array of Lists - 20 points].

You have the use of the Array, ListNode, and TreeNode classes seen on page 19, as well as a
standard Queue class with a no-argument constructor that initializes the Queue to be empty.

You want to write a function levels that has one parameter, a pointer to TreeNode, which
points to the root of a binary tree made of TreeNode objects. The function should return an
Array object indexed from 0 to maxDepth, where maxDepth is the depth of the deepest leaf
in the tree. For every index i between 0 and maxDepth, inclusive, the array cell at index i
should point to a linked list containing every node of depth i in the binary tree, in order from
left-to-right. For example, cell 0 of the array would point to a list containing the tree’s root
node, cell 1 of the array would point to a list containing the root’s left and right children, in
that order, and so on.

You are also allowed to use one standard Queue, which has a no-argument constructor that
initializes the Queue to be empty.

Array<ListNode*> levels(TreeNode* ptr)
// your code goes here



CS 225 Final Exam—Sample Exam 2 14 Name:

(Array of Lists, continued)



CS 225 Final Exam—Sample Exam 2 15 Name:

5. [Dijkstra’s Algorithm - 20 points].

You have the following classes:

class EdgeNode { class VertexRecord {
public: public:

int target; // index of target vertex int distance;
int weight; // weight of edge int known;
EdgeNode* next; // next node in list EdgeNode* edgePtr;

}; };

We can implement graphs using the adjacency list implementation, by having a variable
theGraph of type Array<VertexRecord> that is indexed from 1 to theGraph.size(). In
this graph, the vertices have indices from 1 to theGraph.size(), and all edge weights are
positive.

Your task is to run Dijkstra’s algorithm on such a graph. That is, want to write a function
dijkstra that has two parameters. The first is a reference to a variable theGraph as described
above, and the second is an integer between 1 and theGraph.size() inclusive, which is the
index of the source vertex. The distance and known variables in each VertexRecord object
are initially not initialized in any way, so you will need to take care of that yourself. You may
use those two variables however you see fit, but at the end of your function, each VertexRecord
should store the minimum distance from the source to that vertex, in the distance variable
for that vertex. You should use the “table implementation” to implement this algorithm.

void dijkstra(Array<VertexRecord> & theGraph, int source) {
// your code goes here



CS 225 Final Exam—Sample Exam 2 16 Name:

(Dijkstra’s Algorithm, continued)



CS 225 Final Exam—Sample Exam 2 17 Name:

6. [Optimizing Tries - 20 points].

You have the following node class:

class TrieNode {
public:

bool isLeaf; // true if this is a leaf node; else false,
// in which case this node is part of some linked list

char element;
TrieNode* subtree;
TrieNode* next;

};

The above node class is used to implement a de la Briandais tree; each linked list in the tree
is composed of the above type of node.

We will assume that a list of TrieNode objects of length 12, takes up less space than the
corresponding array of size 27, but that if you had a list of size 13, that would take up more
space than the corresponding array would have needed. Given that assumption, you want to
write the method convertRatio, which has one parameter, a pointer to the above type of
node. That pointer will be a pointer to either a leaf node, NULL, or the starting node of some
linked list in the de la Briandais tree. You want to return a pair<int, int> value, where
the first value is how many array-nodes there would be in the tree rooted at ptr, if this were
a regular trie (i.e. how many linked lists you have in your de la Briandais tree rooted at ptr),
and the second value is how many of those would use less space if implemented as arrays
rather than lists, based on our assumption above. (You can find the pair class on page 19 of
the exam.)

pair<int, int> convertRatio(TrieNode* ptr) {
// your code goes here



CS 225 Final Exam—Sample Exam 2 18 Name:

(Optimizing Tries, continued)



CS 225 Final Exam—Sample Exam 2 19 Name:

These nodes and classes are used on the exam:

template <typename Etype>
class Array {

Array(); // creates array of size 0, with
// lower bound == 0 and upper bound == -1

void setBounds(theLo, theHigh); // resizes array to have lower bound
// theLow and upper bound theHigh; any
// values in that index range already,
// remain in the resized array

int size(); // returns the number of values

Etype& operator[](int index) // returns the cell at parameter index
// there are other member functions but
// they are not used on this exam

};

template <typename Etype1, typename Etype2>
class pair {
public:

Etype1 first;
Etype2 second;

};

class ListNode {
public:

int element;
ListNode* next;
ListNode* prev;
ListNode(int elem) {element = elem; next = NULL; prev = NULL;}

};

class TreeNode {
public:

int element;
TreeNode* left;
TreeNode* right;
TreeNode* parent;
TreeNode(int elem) {element = elem; left = NULL; right = NULL; parent = NULL; }

};



CS 225 Final Exam—Sample Exam 2 20 Name:

(scratch paper, side 1)



CS 225 Final Exam—Sample Exam 2 21 Name:

(scratch paper, side 2)


