
University of Illinois at Urbana-Champaign
Department of Computer Science

Second Examination
CS 225 Data Structures and Software Principles

Sample Exam 2
75 minutes permitted

Print your name, netID, and lab section day/time neatly in the space provided below; print
your name at the upper right corner of every page.

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. In addition, you are not allowed to use any
electronic aides of any kind.

• Do all 5 problems in this booklet. Read each question very carefully.

• You should have 7 sheets total (the cover sheet, plus numbered pages 1-12). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem Points Score Grader

1 12

2 30

3 18

4 15

5 15

Total 90



CS 225 Second Exam—Sample Exam 2 1 Name:

1. [Short Answer – 12 points (4 points each)].

(a) What was the “problem” with using path compression and union-by-height together?
That is, what difficulty does using the two techniques together present? Please be
specific. (The word “problem” is in quotes because we said it turned out that this
“problem” didn’t actually affect things too badly, even if it seems like it would.)

(b) If you have a complete tree of 17 nodes, how many nodes are on the deepest level?

(c) Insert the integers 1 through 6, in that order, into an AVL tree. Draw the resulting
tree. How many rotation operations, total, did you perform? Count a “double rotation”
operation as one rotation operation.



CS 225 Second Exam—Sample Exam 2 2 Name:

2. [Algorithms – 30 points (6 points each)].

(a) Explain why an in-order traversal on a binary search tree should produce the values of
the tree in lexigraphical order (i.e. numerical, alphabetical, or whatever the order is that
is appropriate for those values).

(b) In an AVL tree, why does storing the height of a subtree, in the root node of that subtree,
improve the efficiency of the AVL rebalancing work (versus not storing the height at all)?



CS 225 Second Exam—Sample Exam 2 3 Name:

(c) After performing a combine operation during B-Tree removal, why is it that we need to
check the parent for underflow? i.e. justify that such a combine operation could have
caused the parent to underflow.

(d) Explain why we can implement a complete tree using an array – that is, explain why we
don’t lose information when we get rid of the pointers, i.e. explain why it is that, given
an array, we can always produce the corresponding complete tree.



CS 225 Second Exam—Sample Exam 2 4 Name:

(e) Explain the “repair case” of the Red-Black Tree removal algorithm (the “repair case”
was case 2b, where the node we labelled “x” had a black sibling and that black sibling
had a red child in the child position further from “x’). That is, explain what we do in
this case and justify that it fixes the problems we have without causing new ones.



CS 225 Second Exam—Sample Exam 2 5 Name:

3. [Analysis – 18 points (9 points each)].

(a) If you want to remove some value from a min-heap – not necessarily the minimum value,
just some random value from the heap – one way you could go about this would be to
decrease the priority of the value so that it rises to the top of the heap – i.e. decrease the
priority of the value so that it is the minimum value in the heap – and then perform a
DeleteMin operation. Assuming you already know where the value you want to remove
is located in the min-heap, what would be the order of growth of the running time of
the above removal procedure? Express your answer in big-O notation and justify your
answer.



CS 225 Second Exam—Sample Exam 2 6 Name:

(b) Explain why it is that the rebalancing work performed by the AVL tree insert or remove
is at most O(lg n) on a tree of height O(lg n). Your answer should be detailed enough to
convince us you know what you are talking about. You don’t need to justify the steps
of the algorithm here – simply indicate what those steps are and their running times –
and indicate that those running times add up to what we claim they add up to.



CS 225 Second Exam—Sample Exam 2 7 Name:

4. [List to tree – 15 points].

You have the following two standard node classes (which are publicly accessible and not
encapsulated in another class):

class ListNode {
public:

int element;
ListNode* next;

};

class TreeNode {
public:

int element;
TreeNode* left;
TreeNode* right;

};

Write a function LevelOrderToTree. The function should take as parameter a pointer to
a ListNode, which is the first element of a list that represents the level-order traversal of a
perfect binary tree. This function should reproduce the binary tree from the level-order listing
received as a parameter. That is, LevelOrderToTree should return a TreeNode pointer which
will be the root of a perfect binary tree such that, if a level-order traversal is run on it, it will
yield the same listing as the one received as parameter. If the parameter ListNode pointer
is NULL, the the returned TreeNode pointer should also be NULL.

You have one Queue available to you to use as a local variable, if you wish.

TreeNode* LevelOrderToTree(ListNode* head) {
// your code goes here



CS 225 Second Exam—Sample Exam 2 8 Name:

(List to tree, continued)



CS 225 Second Exam—Sample Exam 2 9 Name:

5. [Counting Leaves – 15 points].

You have the following node class available to you, which is publicly accessible and not
encapsulated in another class:

class TreeNode {
public:

int element;
TreeNode* left;
TreeNode* right;

};

Write a function CountLeaves that takes as a parameter, a pointer to a TreeNode, and returns
the number of leaves in the tree whose root is that TreeNode. (Hint: Use recursion)

int CountLeaves(TreeNode* ptr) {
// your code goes here



CS 225 Second Exam—Sample Exam 2 10 Name:

(Counting Leaves, continued)



CS 225 Second Exam—Sample Exam 2 11 Name:

.



CS 225 Second Exam—Sample Exam 2 12 Name:

(scratch paper)


