
University of Illinois at Urbana-Champaign
Department of Computer Science

Second Examination
CS 225 Data Structures and Software Principles

Spring 2014
7-10p, Tuesday, April 8

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. No electronic aids are allowed, either.

• You should have 5 problems total on 15 pages. The last sheet is scratch paper; you may
detach it while taking the exam, but must turn it in with the exam when you leave. The first
two questions should be answered on your scantron sheet. Please be sure that your netid is
accurately entered on the scantron.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, assume the code compiles, and thus any com-
piler error is an exam typo (though hopefully there are not any typos).

• We will be grading your code by first reading your comments to see if your plan is good, and
then reading the code to make sure it does exactly what the comments promise.

• Please put your name at the top of each page.

Problem Points Score Grader

1 35 scantron

2 20 scantron

3 10

4 20

5 15

Total 100

1. [Miscellaneous – 35 points].

MC1 (2.5pts)

Suppose you implement a queue using a singly linked list with head and tail pointers so that
the front of the queue is at the tail of the list, and the rear of the queue is at the head of
the list. What is the best possible worst-case running time for enqueue and dequeue in this
situation? (As a reminder, enqueue occurs at the rear of the queue.)

(a) O(1) for both functions.

(b) O(1) for enqueue and O(n) for dequeue.

(c) O(n) for enqueue and O(1) for dequeue.

(d) O(n) for both functions.

(e) None of these is the correct response.

MC2 (2.5pts)

Think of an algorithm that uses a Stack to efficiently check for unbalanced brackets. What
is the maximum number of characters that will appear on the stack at any time when the
algorithm analyzes the string ([]()[()])?

(a) 3

(b) 4

(c) 5

(d) 6

(e) None of these is correct.

MC3 (2.5pts)

Consider a sequence of push and pop operations used to push the integers 0 through 9 on a
stack. The numbers will be pushed in order, however the pop operations can be interleaved
with the push operations, and can occur any time there is at least one item on the stack.
When an item is popped, it is printed to the terminal.

Which of the following could NOT be the output from such a sequence of operations?

(a) 0 1 2 3 4 5 6 7 8 9

(b) 4 3 2 1 0 5 6 7 8 9

(c) 5 6 7 8 9 0 1 2 3 4

(d) 4 3 2 1 0 9 8 7 6 5

(e) All of these output sequences are possible.

MC4 (2.5pts)

Consider an array based implementation of a stack, and suppose that it is initially empty.
Upon n push operations the array will be resized in such a way that the running time per
push is O(1) per operation, on average. How many times is the array resized over the n
pushes, using this scheme?

(a) O(1)

(b) O(log n)

(c) O(n)

(d) O(n log n)

(e) O(n2)

MC5 (2.5pts)

Fill in the blanks so that the following sentence is true: If you have a complete tree with 17
nodes, the height (h) of the tree is and there are nodes on level h.

(a) First blank is 4, second is 1.

(b) First blank is 5, second is 2.

(c) First blank is 8, second is 2.

(d) First blank is 8, second is 9.

(e) None of the above options makes the sentence true.

MC6 (2.5pts)

Consider a level order traversal of the following binary tree. Which node is the last node
enqueued before the node containing y is dequeued?

e"

c"

y"

m"

z" a"

u"

o"

r" i"s"

d"

(a) The node containing c.

(b) The node containing o.

(c) The node containing m.

(d) The node containing s.

(e) None of these is the correct answer.

MC7 (2.5pts)

How many data structures in this list can used to implement a Dictionary so that all of its
functions have strictly better than O(n) running time (worst case)?

linked list stack queue binary search tree AVL tree

(a) 1

(b) 2

(c) 3

(d) 4

(e) 5

MC8 (2.5pts)

Suppose that we have numbers between 1 and 1000 in a binary search tree and we want to
search for the number 363. Which of the following sequences can not be the sequence of nodes
visited in the search?

(a) 2, 252, 401, 398, 330, 344, 397, 363

(b) 924, 220, 911, 244, 898, 258, 362, 363

(c) 2, 399, 387, 219, 266, 382, 381, 278, 363

(d) 925, 202, 911, 240, 912, 245, 363

(e) 935, 278, 347, 621, 399, 392, 358, 363

MC9 (2.5pts)

Consider the nearly balanced Binary Search Tree in the figure below.

F

PHA

YSMC

XE

R

Perform the appropriate rotation about R to restore the height balance of the tree. What is
the level order traversal of the tree after it has been balanced?

(a) R E X C M S Y A H P F

(b) R M X E P S Y C H A F

(c) M E R C H P X A F S Y

(d) E C M A H P F R X S Y

(e) None of these is the correct level order traversal.

MC10 (2.5pts)

Consider the BTree in the figure below.

12 31

20 252 6 33 37 42 50

How many disk seeks are required during the execution of Find(42)? Please assume that
none of the data exists in memory when the function call is made.

(a) 1

(b) 2

(c) 4

(d) 5

(e) The number of disk seeks cannot be determined because we do not know the order of
the tree.

MC11 (2.5pts)

In general, for an order m BTree containing n keys, the number of disk seeks is .

(a) O(1)

(b) O(log n)

(c) O(n)

(d) O(n log n)

(e) None of these is accurate because they ignore the order of the tree.

MC12 (2.5pts)

Which of the following trees is a Huffman Tree for the following string of characters?

b a b a c a d a c a b a b

(a)

a

d c

b

(b)

d

b a

c

(c) dba c (d)

b

c d

a

(e) None of these.

MC13 (2.5pts)

Suppose we would like to build a dictionary that maps a set of student names (short strings)
to a study group identifier. Which of the following would work as a key function for our
dictionary? Hint: the ordering of the students in the original set should not matter.

(a) Concatenate the names.

(b) Sort the students’ names and then sum the values of the characters in their names.

(c) Sort each name by character, then form a concatenation of all the sorted names.

(d) Sort and then concatenate the first letters of the students’ names.

(e) None of the above is correct.

MC14 (2.5pts)

Suppose a hash table has size 10, and that the search keys are strings consisting of 3 lower case
letters. We want to hash 7 unknown values from this keyspace. In the hash function, when
we refer to the alphabet positions of the letters, we mean: “a”= 1, “b”= 2, . . . , “z”= 26.

h(k) = (product of the alphabet positions of k′s letters)4 %10

Which of these ideal hash function characteristics are violated by this hash function?

(i) A good hash function distributes the keys uniformly over the array.

(ii) A good hash function is deterministic.

(iii) A good hash function is computed in constant time.

(a) Only (i) is violated.

(b) Only (ii) is violated.

(c) Only (iii) is violated.

(d) At least two of (i), (ii) and (iii) are violated.

(e) None of these characteristics are violated–our hash function is a good one!

2. [Efficiency – 20 points].

Each item below is a description of a data structure, its implementation, and an operation
on the structure. In each case, choose the appropriate running time from the list below. The
variable n represents the number of items (keys, data, or key/data pairs) in the structure.
In answering this question you should assume the best possible implementation given the
constraints, and also assume that every array is sufficiently large to handle all items (unless
otherwise stated).

(a) O(1)

(b) O(log n)

(c) O(n)

(d) O(n log n)

(e) O(n2)

(MC 15) The slower of Enqueue or Dequeue for a Queue implemented with an array.

(MC 16) Find the maximum key in a Binary Tree (not necessarily BST).

(MC 17) Find the In Order Predecessor of a given key in a Binary Tree (if it exists).

(MC 18) Find the In Order Predecessor of a given key in an AVL Tree (if it exists).

(MC 19) Perform rightLeftRotate around a given node in an AVL Tree.

(MC 20) Determine if a given Binary Search Tree is height balanced.

(MC 21) Build a binary search tree (not AVL) with keys that are the numbers between
0 and n, in that order, by repeated insertions into the tree.

(MC 22) Remove the right subtree from the root of an AVL tree, and restore the height
balance of the structure.

3. [MP4ish – 10 points].

End

Start

(a) (4 points) Suppose we execute slight modifications of MP4 functions BFSfillSolid, and
DFSfillSolid on the hexagonal grid above, beginning at the “Start” cell, and changing
white pixels to red. If the functions are executed simultaneously, which function changes
the cell marked “End” to red, first? Assume that we start the algorithm by adding the
“Start” cell to the ordering structure, and that we add the six neighboring cells to the
structure clockwise beginning on the top. As a reminder, the fill should change the color
when a cell is removed from the ordering structure.

BFSfillSolid DFSfillSolid

(b) (2 points) What ordering structure did you use in your answer to part (a)?

Queue Stack

(c) (4 points) Suppose we want to fill some part of a arbitrary grid containing n cells. What
is the worst-case running time of BFSfillSolid if we start from an arbitrary location?

O(1) O(log n) O(n) O(n log n) O(n2)

4. [Quadtrees – 20 points].

For this question, consider the following partial class definition for the Quadtree class, which
uses a quadtree to represent a square PNG image as in MP5.

class Quadtree

{

public:

// ctors and dtor and all of the public methods from MP5, including:

void buildTree(PNG const & source, int resolution);

RGBApixel getPixel(int x, int y) const;

PNG decompress() const;

void prune(int tolerance);

...

// a NEW function for you to implement

void prunish(int tolerance, double percent);

private:

class QuadtreeNode

{

QuadtreeNode* nwChild; // pointer to northwest child

QuadtreeNode* neChild; // pointer to northeast child

QuadtreeNode* swChild; // pointer to southwest child

QuadtreeNode* seChild; // pointer to southeast child

RGBApixel element; // the pixel stored as this node’s "data"

};

QuadtreeNode* root; // pointer to root of quadtree, NULL if tree is empty

int resolution; // init to be the resolution of the quadtree NEW

int distance(RGBApixel const & a, RGBApixel const & b); // returns sq dist between colors

void clear(QuadtreeNode * & cRoot); // free memory and set cRoot to null

// a couple of private helpers are omitted here.

};

You may assume that the quadtree is perfect and that it has been built from an image that
has size 2k × 2k. As in MP5, the element field of each leaf of the quadtree stores the color of
a square block of the underlying PNG image; for this question, you may assume, if you like,
that each non-leaf node contains the component-wise average of the colors of its children. You
may not use any methods or member data of the Quadtree or QuadtreeNode classes which
are not explicitly listed in the partial class declaration above. You may assume that each
child pointer in each leaf of the Quadtree is NULL.

(a) (4 points) Write a private member function int Quadtree::tallyNear(RGBApixel const

& target, QuadtreeNode const * curNode, int tolerance), which calculates the
number of leaves in the tree rooted at curNode with element less than or equal to
tolerance distance from target. You may assume that you are working on a per-
fect (unpruned), non-empty Quadtree. Write the method as it would appear in the
quadtree.cpp file for the Quadtree class. We have included a skeleton for your code
below–just fill in the blanks to complete it.

int Quadtree::tallyNear(RGBApixel const & target,

QuadtreeNode const * curNode, int tolerance) __________ {

// function not called with curNode == NULL;

if (curNode->__________ == __________) { // check for leaf

RGBApixel current = curNode->element;

if (distance(current, target) __________ tolerance)

return __________;

else return 0;

}

// otherwise...recurse!

int devTotal = _____________________

return __________;

}

(b) (6 points) Our next task is to write a private member function declared as void

Quadtree::prunish(QuadtreeNode * curNode, int tolerance, int res, double

percent) whose functionality is very similar to the prune function you wrote for MP5.
Rather than prune a subtree if ALL leaves fall within a tolerance of the current node’s
pixel value, prunish will prune if at least percent of them do. Parameter res is intended
to represent the number of pixels on one side of the square represented by the subtree
rooted at curNode. All the constraints on pruning from the prune function apply here,
as well. That is, you should prune as high up in the tree as you can, and once a subtree
is pruned, its ancestors should not be re-evaluated for pruning. As before, we’ve given
you most of the code below. Just fill in the blanks on the next page.

void Quadtree::prunish(QuadtreeNode * curNode, int tolerance,

int res, double percent) {

if (curNode == NULL)

return;

// count the number of leaves more than tolerance distance from curNode

int nearNodes = _________________; //(1 points)

double percentNear =_________________; //(1 points)

// prune conditions

if (__________________________) { //(2 points)

clear(curNode->neChild);

clear(curNode->nwChild);

clear(curNode->seChild);

clear(curNode->swChild);

return;

}

// can’t prune here :(so recurse!

________________________ //(2 points)

return;

}

(c) (2 points) Next, write the public member function void Quadtree::prunish(int tolerance,

double percent) that prunes from the Quadtree any subtree with more than percent

leaves within tolerance color distance of the subtree’s root.

void Quadtree::prunish(int tolerance, double percent) {

return;

}

(d) In this part of the problem we will derive an expression for the maximum number of
nodes in a Quadtree of height h, and prove that our solution is correct. Let N(h)
denote the maximum number of nodes in a Quadtree of height h.

i. (3 points) Give a recurrence for N(h). (Don’t forget appropriate base case(s).)

We solved the recurrence and found a closed form solution for N(h) to be:

N(h) =
4h+1 − 1

3
, h ≥ −1

ii. (3 points) Prove that our solution to your recurrence from part (i) is correct by
induction:
Consider a maximally sized Quadtree of arbitrary height h.

• If h = −1 then the expression above gives: which is the maximum
number of nodes in a tree of height -1 (briefly explain).

• otherwise, if h > −1 then by an inductive hypothesis that says:

we have N() = nodes.

so that N(h) = = ,
which was what we wanted to prove.

iii. (2 points) Use your result from part (d) to give a lower bound for the height of a
quad tree containing n nodes.

5. [Stacks and Queues – 15 points].

In this problem you will write a function reverseOdd that takes a queue of integers as a
parameter, and that modifies that queue, reversing the order of the odd integers in the queue
while leaving the even integers in place.

For example given this queue (back to front):

< 14 13 17 8 4 10 11 4 15 18 19 >

calling the function would change it to:

< 14 19 15 8 4 10 11 4 17 18 13 >

We have given you the Stack and Queue interfaces below. You may also assume the existence
of a helper function isOdd() that returns true for odd integers and false for even integers.

template <T>

class Stack

{

public:

// ctors and dtor and all of the public methods, including:

T pop();

void push(T data);

bool isEmpty();

private:

...

}

template <T>

class Queue

{

public:

// ctors and dtor and all of the public methods, including:

T dequeue();

void enqueue(T data);

bool isEmpty();

private:

...

}

(a) (3 points) Write a function that returns the size of a queue.

int Qsize(queue q) {

}

(b) (8 points) Write the function reverseOdd as described above. We have provided you
with a skeleton. Just fill in the blanks!

void reverseOdd(queue & input) {

stack s;

int n = Qsize(input);

int counter = 0;

while (__________) {

int temp = input.dequeue();

if ____________

________________;

___________;

counter++;

}

counter = 0;

while (__________) {

int temp = input.dequeue();

if ____________

________________;

___________;

counter++;

}

}

(c) (2 points) Suppose the queue contains O(n) even integers, and O(log n) odd integers.
What is the worst case total running time of the algorithm? Give the tightest bound
you can.

(d) (2 points) Suppose the queue contains O(n) even integers, and O(log n) odd integers.
How much memory does the algorithm use? Give the tightest bound you can.

scratch paper

