
University of Illinois at Urbana-Champaign
Department of Computer Science

Second Examination
CS 225 Data Structures and Software Principles

Summer 2005
3:00pm – 4:15pm Monday, July 18

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. No electronic aids are allowed, either.

• You should have 6 sheets total (the cover sheet, plus numbered pages 1-11). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave. can use this sheet as reference while taking the exam.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem Points Score Grader

1 15

2 15

3 15

4 15

5 15

6 15

Total 90



CS 225 Second Exam—Summer 2005 1 Name:

1. [Simple List Code – 15 points].

You are given the ListNode class shown on page 8 of the exam. You want to write a function
insertAsSecondToLast that has two parameters, and returns nothing. The first parameter,
head, is of type reference-to-pointer-to-ListNode, and will point to a linked list made up of
objects of type ListNode. If the list is empty, then head will point to NULL; otherwise, the
prev of the first node and the next of the last node will both point to NULL. The second
parameter, insElem, is of type int. You want to insert this integer as the second-to-last
value of the list – i.e. right before the last node. If the list is empty, then insert this value as
the first value instead.

Whatever linked list this results in, the head parameter should be pointing to the first node
of that list when you are done. You must physically move nodes – you cannot reassign the
element variables in the nodes.

void insertAsSecondToLast(ListNode * & head, int insElem) {
// your code goes here



CS 225 Second Exam—Summer 2005 2 Name:

2. [Skiplists – 15 points].

You have a skiplist class as shown on page 9 of the exam. You want to write a member
function levelsDouble that will have no parameters and will return a bool value. If there
is exactly one node on the top level (maxLevel), and each level below that level, has exactly
double the number of nodes that were on the previous level, this function should return true.
Otherwise, this function should return false.

bool SkipList::levelsDouble() {
// your code goes here



CS 225 Second Exam—Summer 2005 3 Name:

3. [Sum Of Removal – 15 points].

You have the ListNode class shown on page 8 of the exam. You want to write a member
function sumOfRemoval that will have one parameter and will return nothing. The parameter
is of type reference-to-pointer-to-ListNode, and will point to the first node of a doubly-linked
list. If the list is empty, the pointer points to NULL; otherwise, the first node’s prev and the
last node’s next are both NULL.

Your task is to remove all nodes whose values are greater than 100, and then to add a new
node at the end of the list, whose value is equal to the sum of all the values in all the nodes
you removed. For example, if the parameter list had been
4->502->10->12->7->33->5->821->11->103->7->NULL, then your resultant list should be
4->10->12->7->33->5->11->7->1426->NULL

Whatever linked list this results in, the head parameter should be pointing to the first node
of that list when you are done. You must physically move nodes – you cannot reassign the
element variables in the nodes.

void SumOfRemoval(ListNode * & head) {
// your code goes here



CS 225 Second Exam—Summer 2005 4 Name:

(continued)



CS 225 Second Exam—Summer 2005 5 Name:

4. [Ordered Trees – 15 points].

You are given the OrderedNode class on page 8 of the exam. You want to write a function
insertAsFirst that has three parameters. The first two parameters are integers. The third
parameter is of type pointer-to-OrderedNode, and points to a binary tree representation of
an ordered tree (i.e. the “first child/next sibling” representation). (If the tree is empty, the
pointer would point to NULL.) The function should insert the second integer into the tree, as
the first child of whatever node the first integer is stored in. (That node’s existing first child
then becomes the second child, the second child becomes the third child, and so on.) If the
first integer is NOT in the tree, then do not alter the tree at all.

void insertAsFirst(int parent, int insChild, OrderedNode* ptr) {
// your code goes here



CS 225 Second Exam—Summer 2005 6 Name:

5. [Unordered Trees – 15 points].

You are given the TreeNode class on page 8 of the exam. You want to write a function
equivalent that has two parameters, both of type pointer-to-TreeNode. Each of these point-
ers, points to a binary tree. You want to find out of these two trees are equivalent unordered
trees. That is, you want to find out if ignoring the order of the child subtrees makes these
two trees equivalent. If switching the order of the left and right subtrees at various nodes of
the first tree, could lead to the second tree, you want to return true; otherwise, you want to
return false.

bool equivalent(TreeNode* first, TreeNode* second) {
// your code goes here



CS 225 Second Exam—Summer 2005 7 Name:

6. [Finding Depth – 15 points].

You are given the TreeNode class on page 8 of the exam. You want to write a function
findDepth that has two parameters. The first parameter is of type pointer-to-TreeNode, and
points to a binary search tree (which could be empty). The second parameter will be an
integer. You want to return the depth of the node that contains that parameter integer in
the parameter binary search tree. (Remember that the depth of the root node of a tree is 0,
not 1.) If the parameter integer is not in the parameter binary search tree at all, return -1.

int findDepth(TreeNode* ptr, int value) {
// your code goes here



CS 225 Second Exam—Summer 2005 8 Name:

class ListNode { // needed for problems 1 and 3
public:

int element;
ListNode* next;
ListNode* prev;

ListNode(int value) {element = value; next = NULL; prev = NULL;}
};

class OrderedNode { // needed for problem 4
public:

int element;
OrderedNode* firstChild;
OrderedNode* nextSibling;

OrderedNode(int value) {element = value; firstChild = NULL; nextSibling = NULL;}
};

class TreeNode { // needed for problems 5 and 6
public:

int element;
TreeNode* left;
TreeNode* right;

TreeNode(int value) {element = value; left = NULL; right = NULL; }
};



CS 225 Second Exam—Summer 2005 9 Name:

template <typename Etype>
class Array { // needed for the SkipList class below

// Here are the member function declarations for the Array class;
// we’ve left the declarations for the variables, iterators and iterator
// support functions (begin(), end(), etc.) out; you don’t need them.
Array(); // size 0 array, indiced 0 through -1
Array(int low, int high); // indices low through high
Array(Array<Etype> const & origVal); // copy constructor
~Array(); // destructor
Array<Etype> const & operator=(Array<Etype> const & origVal);//assignment op
Etype const & operator[](int index) const; // accesses cell at param index

Etype & operator[](int index); // accesses cell at param index
void initialize(Etype const & initElement); // inits all cells to param
void setBounds(int theLow, int theHigh); // changes bounds of array,
int size() const; // returns number of cells in array
int lower() const; // returns lowest index
int upper() const; // returns upper index

};

class SkipList { // needed for problem 2
public:

// various member functions here
private:

class SkipNode {
int element; // value stored in this node

// array of "next pointers" for all levels this node is a part of;
// ptrArray.lower() is 0 and ptrArray.upper() is the node’s max level
Array < SkipNode* > ptrArray;

};

// array of pointers to first node on each level; head.lower() is 0
// and head.upper() is the skiplists’s max level
Array < SkipNode* > head;
int maxLevel; // largest level any node is allowed to have
int numElements; // number of nodes in list

};



CS 225 Second Exam—Summer 2005 10 Name:

(scratch paper, page 1)



CS 225 Second Exam—Summer 2005 11 Name:

(scratch paper, page 2)


